
OPL3 Math

September 23, 2013

This document tries to incorporate known facts about the inner OPL3
workings to help software developers design and/or improve emulators.

1 Conventions

As the OPL3 uses 1’s complement to implement subtractions and negations, we will
define special subtraction and unary minus operators for this purpose:

x	 y := x− y − 1

	x := −x− 1

As x	 y can be written as x+ (0	 y), these operations can easy implemented using
either the NOT operation if the bit length of y is a multiple of 8, or by using the XOR

operation with 2n − 1 if y is of bit length n.
Furthermore, we will define a special notation for hexadecimal numbers. They will be

printed in typewriter font, using a $ as suffix, e. g. x	 1F$.
We will also define ¬x to be the NOT operation on all bits of x, x⊗ y to be x XOR y on

all bits on x and y, and x ∧ y to be the x AND y, so that it looks more like math.
To denote the bit length n of a variable x, we will write x|n|, and to extract a single bit

m of a variable y, we will write y|(m)| ∈ {0; 1}. We will also define here for convenience
that x|n| is equal to x ∧ (2n − 1) = x mod 2n, so that x can be an expression.

This all incorporates to this:(
x|n| 	 y|n|

)
|n| = (x+ ¬y)|n| = (x+ (y ⊗ (2n − 1)))|n|

Please note that—if not specified otherwise—all arithmetics in this document will be
in N and fractional results of expressions will be rounded towards zero. Unfortunately,
this makes arithmetics sensitive to order of execution; thus let’s define the order of
execution to be from left to right and from bottom to top if ambiguous, e. g., a · b·cd will
be calculated (from left to right) as a · ((b · c)/d).

1

2 Sine wave

According to the “OPLx decapsulated” document by Matthew Gambrell and Olli
Niemitalo1, the OPL3 contains a ROM with the first quarter of a sine wave. The sine
wave is saved as a logarithmic/exponential table combination with 256 entries each, so
that the full round-trip of 2π “in the real world” is 1024 in OPL3 units.

The two formulas now given are the only place in this document where the arithmetics
are done within R, and [·] here means “round to the closest value within N”:

Φ∗(x) :=
[(

2x/256 − 1
)
· 210

]
ϕ∗(x) :=

[
−256 · log2

(
sin
(

(x+ 0.5) · π

2 · 256

))]
x ∈ {0 ≤ y ≤ 255 | y ∈ N}

Here, Φ∗ is the exponential function, and ϕ∗ is the logarithmic function (if you haven’t
guessed that yet). If you look at it, you will see that Φ∗(x) ∈ [0; 1018] and ϕ∗(x) ∈
[0; 2137], so we cannot simply write 210 + Φ∗(256 − ϕ∗(x)), as this will only be defined
for x ≤ 83 (210 is the hidden bit). To get a full sine wave, x has to go as high as 210− 1.
For this, we have to refine these functions.

First, the logarithmic function, which we will define for arbitrary x ≥ 0:

ϕ(x) :=


ϕ∗(x) if 0 ≤ x|10| < 256

ϕ∗(256− x|8|) if 256 ≤ x|10| < 512

ϕ∗(x|8|) + 215 if 512 ≤ x|10| < 768

ϕ∗(256− x|8|) + 215 if 768 ≤ x|10|

Please note the offset of 215 in the latter two cases—this is used as as sign bit, which
comes in handy now that we refine the exponential function:

Φ(x) :=

{
0 +

(
210 + ϕ(256− x|8|)

)
· 2/2(x/256) if 0 ≤ x < 215

0	
(
210 + ϕ(256− x|8|)

)
· 2/2(x|14|/256) if 215 ≤ x

To get a nice full sine wave, we can finally write Φ(ϕ(x)) | x ∈ [0; 1023].

1https://docs.google.com/document/d/18IGx18NQY_Q1PJVZ-bHywao9bhsDoAqoIn1rIm42nwo/edit

2

